M88体育-明升M88体育讯(通讯员 李昂)猕猴桃是原产于我国的重要果树。据统计,我国猕猴桃选育品种累计达180余个,栽培总面积400多万亩,产量超过300万吨,两者均稳居世界第一(超过50%),在脱贫攻坚和乡村振兴事业中发挥了重要作用。猕猴桃是淀粉积累型水果,其淀粉含量占干物质的40%左右,是决定风味和贮藏性能关键因素。淀粉体是一种非光合的质体形式,是淀粉代谢的重要场所。一般,质体定位的2000-3000个蛋白质中,仅有150个左右是质体自身编码的蛋白,其他均为通过TOC/TIC等复杂途径转入。因此,探讨果实淀粉体的生物发生和分化机制就显得十分重要。
近日,M88体育-明升M88体育果蔬园艺作物种质创新与利用全国重点实验室程运江教授/曾云流副教授课题组在The Plant Journal发表了题为The kiwifruit amyloplast proteome (kfALP): a resource to better understand the mechanisms underlying amyloplast biogenesis and differentiation的学术论文,揭示了猕猴桃果实淀粉体生物发生和分化的潜在分子机制。
揭示猕猴桃果实淀粉体生物发生和分化的潜在分子机制
我们发现黄肉和绿肉猕猴桃果实的淀粉体的生物发生模式相似,都由叶绿体分化而来。然而,其淀粉体分化模式却存在差异:黄肉猕猴桃果实淀粉体分化为含有大量质体小球的有色体,并伴随着淀粉颗粒的降解和类囊体膜的消失,而绿肉果实的叶绿体结构一直比较稳定(图1)。这很好地解释了滞绿/褪绿表型,并构成了甜度风味形成的结构基础。
图1 猕猴桃果实淀粉体形成与分化模式
我们创造性地发明了一种基于密度梯度离心方法的猕猴桃果肉淀粉体的分离提纯方法,并将之成功的应用到黄/绿肉的不同发育与成熟期质体的分离提纯。基于此,我们首先利用Label-free和TMT技术,解析并构建了目前为止最大的淀粉体蛋白谱库(图2)。其次,比较蛋白组学分析表明GWD、PWD及BAM等多个参与淀粉代谢的关键蛋白,可能参与淀粉颗粒的降解;TOC/TIC以及ATPase蛋白可能参与淀粉体生物形成与分化。更为重要的是,我们发现光合作用和四吡咯途径相关蛋白在两种果实淀粉体分化过程中的变化模式存在显著差异,推测二者可能是影响淀粉体分化的关键蛋白。
综上所述,上述结果重塑了以淀粉体为中心的质体分化网络,为猕猴桃果实品质提升,提供了重要研究方向。
图2 淀粉体分离提纯、蛋白谱及其分化机制
M88体育-明升M88体育园艺学博士李昂为论文第一作者,M88体育-明升M88体育果树系曾云流副教授为该论文通讯作者,程运江教授、已毕业研究生林加嘉和浙江省农业科学院邓志平研究员等参与了研究。新西兰植物与食品研究院Ross Atkinson, Niels J Nieuwenhuizen、Charles Ampomah-Dwamena 等对该研究进行了指导。本研究得到了国家自然科学基金项目面上项目、国家现代农业柑橘产业技术体系、国家重点研发、湖北省重点研发等项目的资助。
曾云流副教授领衔的研究团队长期从事果实品质调控研究,受聘为国家现代(柑橘)农业产业体系猕猴桃质量安全与加工保鲜岗位、湖北省高层次人才计划。质体是植物特有的一类亚细胞器,质体分化是采后成熟与衰老的主要表征,比如转色、淀粉降解和香气释放。课题组以猕猴桃、柑橘果实为材料,建立了有色体(JXB, 2011)、造油体(Horticulture Research, 2018)、淀粉体(Plant Journal, 2023a),及质体小球(Plant Journal, 2023b)的高纯度分离提纯方法。通过研究温度、光质、乙烯等信号调控质体分化,如淀粉体-有色体分化(Plant Physiol, 2015),解析了果实风味形成机制,在辅助萜烯类香气育种(Plant Physiol, 2020)、色泽改良(JXB, 2021)等方面取得了重要突破。同时,开发了配套品质提升技术、工艺与装备,比如金柑果面/猕猴桃果肉快速褪绿技术,猕猴桃果面色斑去除装备,猕猴桃变温即食控熟装备等等,这些装备已经在主产区推广应用,取得了良好效益。
审核人:曾云流
【英文摘要】
The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars – yellow-fleshed ‘Hort16A’ and green-fleshed ‘Hayward’. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in ‘Hort16A’. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In ‘Hayward’, significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in ‘Hort16A’. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.
原文链接: